姓名:刘志丹 单位:农业建筑与环境工程系 职称:教授 职务:副系主任

 ◆简介  刘志丹,工学博士,教授,博士生导师。中科院博士学位,分别在瑞典隆德大学、清华大学从事访问学者、博士后研究。现代农业产业技术体系北京市创新团队岗位科学家,曾入选中国农业大学“优秀人才”、 北京市“高创计划”青年拔尖人才、神农中华农业科技奖优秀创新团队(排名第12),获中国工程院与中国石化联合设立的闵恩泽能源化工奖、中国农业大学研究生教育成果一等奖(排名第1)。
◆研究领域
(1)基于化工/能源/环境/机械/农工等多学科交叉的环境增值技术理论与方法
(2)水热转化生物原油、生物炭及资源化产品研究与装备
(3)生物制氢、生物氢烷、生物燃气等生物转化技术与装备
(4)废弃物、废水及微藻能源化资源化技术与产品
◆学术兼职
(1)国际学术期刊《International Journal of Hydrogen Energy》客座编辑
(2)国际学术期刊《Frontiers in Microbiology》 编委
(3)世界水协会(IWA)中国青年委员会委员
(4)国际微生物电化学学会(ISMET)会员
(5)美国农业与生物工程师学会(ASABE)会员
(6)英国皇家化学会会员
(7)中国农业工程学会高级会员
(8)中国可再生能源学会生物质能源专委会会员
(9)《Biotechnology for Biofuels》、《Environmental Science and Technology》、《Applied Energy》、《Water Research》、《ACS Applied Materials & Interfaces》、《Scientific reports》、《环境工程学报》等70余个期刊审稿人
◆科研项目
    近五年先后主持和参加国家自然科学基金、国家重点研发计划、美国盖茨基金等项目10余项,主要包括:
(1)现代农业产业技术体系北京市奶牛创新团队废弃物资源化岗位 (2019/1-)
(2)国家自然科学基金中美(NSFC-NSF)国际合作项目“INFEWS: U.S.-China: 旱区“食物、能源、水”系统技术-环境-经济耦合平台构建与模拟” ( 5171102048),2019.1-2022.12,课题主持
(3)国家重点研发计划课题(2016YFD0501402):固体废弃物热处理及生物炭气油制备关键技术研发,2016.7-2020.12,主持
(4)国家自然科学基金-石油化工联合基金(U1562107):有机废弃物加压水热液化转化年轻石油的应用基础研究,2016.1-2018.12,主持
(5)国家自然科学基金中泰(NSFC-NRCT)国际合作项目(51561145013):太阳能水热水解及生化转化耦合制取微藻生物燃料基础研究,2015.10-2018.9,课题主持
(6)美国比尔及梅琳达•盖茨基金会项目:基于水热技术的生态厕所粪便处理示范,2018-2019,主持
(7)美国比尔及梅琳达•盖茨基金会项目:热水解-气化集成技术处理厕所粪尿的环境增值系统与装置,2015-2018,主持
(8)北京市科技计划课题(Z161100001316009):微藻净化沼液与转化原油的环境增值能源工艺和装置示范,2016.1-2018.12,主持
(9)北京市优秀人才资助计划青年拔尖个人项目:2016-2018,主持
(10)大北农青年学者研究计划:灰分调控和催化剂强化藻类生物质水热液化高效产油机制,2015-2017,主持
(11)国家自然科学基金面上项目(51576206):低脂高蛋白藻水热液化过程关键元素迁移与成油机制,2016-2019,参加
(12)“十二五”国家科技支撑(2014BAD02B03):秸秆高效生物转化制备氢气和高值化产品关键技术研究及其系统集成示范”,2014-2016,子课题主持.
(13)国家自然科学基金青年项目(21106080):微生物电解池强化生物质暗发酵制氢的过程机理研究”,2012-2014,主持.
◆论著及成果
  在《Applied Energy》、《Green Chemistry》、《Current Opinion in Biotechnology》、《Biotechnology for biofuels》、《Renew Sust Energ Rev》、《ACS Sustainable Chemistry and Engineering》、《Journal of Cleaner Production》、《Biores. Technol》等能源/环境/资源/化工等交叉性学科期刊发表学术论文80余 篇,其中第一/通讯作者SCI 论文50余篇,主编/参编著作11部, 授权专利10项。近期主要成果:
[1]Si B, Yang L, Zhou X, Watson J, Tommaso G, Chen WT, Liao Q, Duan N, Liu Z*, Zhang Y*. Anaerobic Conversion of Hydrothermal Liquefaction Aqueous Phase: Fate of Organics and Intensification with Granule Activated Carbon/Ozone Pretreatment. Green Chemistry. 21 (2019), 1305-1318.
[2]Qu Z, Zeng J, Liu Z*, et al., Hydrothermal cell disruption of Nannochloropsis sp. and its influence on lipid extraction. Algae Research. 35(2018), 407-415.
[3]Lu J#, Li H#., Zhang Y, Liu Z*. Nitrogen Migration and Transformation during Hydrothermal Liquefaction of Livestock Manures. ACS Sustainable Chemistry and Engineering. 2018.  6, 10, 13570-13578
[4]Si B, Jamison W, Aierzhati A, Yang L, Liu Z*, Zhang Y*. 2019. Biohythane production of post-hydrothermal liquefaction wastewater: A comparison of two-stage fermentation and catalytic hydrothermal gasification. Bioresource Technology. 274: 335-342
[5]Watson J, Lu J, Souza R, Zhang Y, Liu Z*. Effects of the Extraction Solvents in Hydrothermal Liquefaction Processes: Biocrude Oil Quality and Energy Conversion Efficiency. Energy. 167(2019), 189-197.
[6]Li H#, Lu J#, Zhang Y, Liu Z*. Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metals. Journal of Analytical and Applied Pyrolysis. 2018.135, 133-140
[7]Liu Z., Li H, Zeng J, Liu M, Zhang Y, Liu Z*. Influence of Fe/HZSM-5 Catalyst on Elemental Distribution and Product Properties during Hydrothermal Liquefaction of Nannochloropsis sp.  Algal Research. 35C (2018) pp. 1-9
[8]Li H., Wang M, Wang X, Zhang Y, Lu H, Duan N, Li B, Zhang D, Dong T, Liu Z*. Biogas liquid digestate grown Chlorella sp. for biocrude oil production via hydrothermal liquefaction. Science of Total Environment. 635(2018)70-77
[9]Si B, Li J, Zhu Z, Shen M, Lu J, Duan N, Zhang Y, Liao Q, Huang Y, Liu Z*. Inhibitors degradation and microbial response during high-rate continuous anaerobic conversion of hydrothermal liquefied wastewater. Science of Total Environment. 630 (2018) 1124-1132
[10]Shen R., Jiang Y, Ge Z, Lu J, Zhang Y, Liu Z*, Ren Z*. Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation. Applied Energy. 212 (2018) 509-515.
[11]李嘉铭,刘志丹等。生物氢烷耦合微藻养殖的畜禽粪污资源化系统质量流分析。中国沼气。36(2018) 71-75
[12]Lu J, Watson J, Zeng J, H Li, Z Zhu, M Wang, Y Zhang, Z Liu*. Biocrude Production and Heavy Metal Migration during Hydrothermal Liquefaction of Swine Manure. Process Safety and Environmental Protection. 115(2018)108-115
[13]Liu Z, Si B, Li J, He J, Zhang C*, Lu Y, Zhang Y, Xing XH*. Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up. Current Opinion in Biotechnology. 2018, 50, 25-31
[14]Zhang C, Xiao Y, Ma Y*, Li B, Liu Z*, Lu C, Liu X, Wei Y, Zhu Z, Zhang Y. Algae biomass as a precursor for synthesis of nitrogen-and sulfur-co-doped carbon dots: A better probe in Arabidopsis guard cells and root tissues. Journal of Photochemistry and Photobiology B: Biology. 2017, 174, 315-322
[15]Zhu Z, Si B, Lu J, Jamison W, Zhang Y, Liu Z*. Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk. Biores. Technol.  2017, 243, 9-16.
[16]Tian C, Liu Z*, Zhang Y. 2017. Chapter : Hydrothermal liquefaction (HTL): A Promising Pathway
for Biorefinery of Algae. In Algal Biofuels: Recent Advances and Future Prospects. Editors: Gupta SK, Malik A, Bux F. Springer Nature publisher. ISBN 978-3-319-51009-5.
[17]He, B., Liu Z. 2017. Chapter 4: Properties of Biofuels. In Biofuels Production and Processing Technology. Editors: M. R. Riazi and D. Chiaramonti. CRC Press/Taylor & Francis Group. (Cat # K29842; in press).
[18]Lu J, Zhang J, Zhu Z, Zhang Y, Zhao Y, Li R, Watson J, Li B, Liu Z*. Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction. Energy conversion and management. 2017,134: 340-346.
[19]Lu J, Liu Z*, Zhang Y, Li B, Lu Q, Li H, Zhu Z, Tian C, Si B. Improved production and reduced nitrogen content of biocrude oil from low-lipid high-ash macroalgae Enteromorpha prolifera through addition of crude glycerol. Journal of Cleaner Production. 2017. 142: 749-757.
[20]朱张兵等。鸡粪沼气发酵液小球藻水热液化转化生物原油的研究。农业工程学报。2017,33,191-196
[21]Si B-C, Li J-M, Zhu Z-B, Zhang Y-H, Lu J-W, Shen R-X, Zhang C, Xing X-H, Liu Z*. Continuous biohythane production from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors. Biotechnology for biofuels. 9(2016), 254.
[22]Shen R, Liu Z*, He Y, Zhang Y, Lu J, Zhu Z, Si B, Zhang C, Xing X. Microbial electrolysis cell to treat hydrothermal liquefied wastewater from cornstalk and recover hydrogen: degradation of organic compounds and characterization of microbial community. Int. J. Hydrogen Energ. 41(2016), 4132-4142.
[23]Zhu Z, Liu Z*, Zhang Y, Li B, Lu H, Duan N, Si B, Shen R, Lu J. Recovery of reducing sugars and volatile fatty acids from cornstalk at different hydrothermal treatment severity. Biores. Technol. 199(2016), 220-227.
[24]Si B, Liu Z*, Zhang Y, Li J, Shen R, Zhu Z, Xing X. Towards biohythane production from biomass: Influence of operational stage on anaerobic fermentation and microbial community. Int. J. Hydrogen Energ. 41(2016), 4429-4438
[25]Shen R#, Tian C#, Liu Z*, Zhang Y*, Li B, Lu H, Duan N. Temporal changes in the characteristics of algae in Dianchi Lake, Yunnan province, China. Frontiers in Agricultural Science and Engineering. 2(2015), 266-275
[26]Si B, Li, J, Li B, Zhu Z, Shen R, Zhang Y*, Liu Z*. The role of hydraulic retention time on controlling methanogenesis and homoacetogenesis in biohydrogen production using upflow anaerobic sludge blanket (UASB) reactor and packed bed reactor (PBR). Int. J. Hydrogen Energ. 40(2015), 11414-11421.
[27]Si B, Liu Z*, Zhang Y, Li J, Xing X, Li B, Duan N, Lu H. Effect of reaction mode on biohydrogen production and its microbial diversity. Int. J. Hydrogen Energ. 40 (2015), 3191-3200
[28]Liu Z*, He Y, Shen R, Zhu Z, Xing XH, Li B, Zhang Y. Performance and microbial community of carbon nanotube fixed-bed microbial fuel cell continuously fed with hydrothermal liquefied cornstalk biomass. Biores. Technol. 185 (2015), 294-301.
[29]Lu J, Liu Z*, Zhang Y, Li B, Li H, Tian C, Zhu Z. Effects of operational parameters on the hydrothermal liquefaction of Enteromorpha prolifera and products distribution. J Biob Mat Bioenergy. 9(2015), 16
[30]Tian C, Liu Z*, Zhang Y, Li B, Cao W, Lu H, Duan N. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: Effects of operational parameters and relations of products. Biores technol.. 184 (2015), 336
[31]Liu Z, Zhang C, Wang L, He J, Li B, Zhang Y, Xing XH*. Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community. Biores technol.175 (2015), 152
[32]He Y, Liu Z*, Xing XH, Li B, Zhang Y, Shen R, Zhu Z, Duan N Carbon nanotubes as simultaneous anodes and microbial carriers for up-flow fixed-bed microbial fuel cell. Biochem Engi J. 94 (2015), 39
[33]Liu Z. Gas Biofuels from Waste Biomass: Principles and Advances. Nova Science Publishers, Inc. USA. ISBN 978-1-63483-210-6
[34]Liu Z*, Liu J, Li B, Zhang Y, Xing XH. Focusing on the process diagnosis of anaerobic fermentation by Tian C, Li B, Liu Z*, Zhang Y*, Lu H. Hydrothermal liquefaction for algal biorefinery: A critical review. Renew Sust Energ Rev. 2014, 38, 933-950.(ISI高被引论文;included by ChemInform Abstract, Volume 46, Issue 29, page no, July, 2015 DOI: 10.1002/chin.201529326)
[35]Liu Z, Li Q, Zhang C, Wang L, Han B, Li B, Zhang Y, Chen H, Xing XH*. Effects of operating parameters on hydrogen production from raw wet steam-exploded cornstalk and two-stage fermentation potential for biohythane production. Biochem Engi J. 2014, 234
[36]Li H, Liu Z*, Zhang Y*, Li B, Lu H, Duan N, Liu M, Zhu Z, Si B. Conversion efficiency and oil quality of low-lipid-high-protein and high-lipid-low-protein microalgae via hydrothermal liquefaction. Biores technol. 2014, 154, 322
[37]屈埴,刘志丹*等。厨余垃圾水热液化成油特性研究。太阳能学报。2016, 37, 1327
[38]Liu Z. Gas Biofuels from Waste Biomass: Principles and Advances. Nova Science Publishers, Inc. USA. 2015.
[39]一种热水解耦合厌氧发酵处理有机废弃物的方法。国家发明专利. 专利号:ZL201610629315.1
[40]一种藻类与粗甘油共液化制备生物原油及方法。国家发明专利. 2014. 专利授权号:ZL201410499416.2。
[41]一种氢烷发酵耦合微藻养殖处理有机废弃物的方法. 国家发明专利. 2014. 专利授权号: ZL 201410226015.X
[42]连续处理污水产电的碳纳米管载体型微生物电化学装置. 国家发明专利. 2014.专利授权号:ZL 2014100626744
[43]用于有机废弃物发酵过程监测的微生物燃料电池及方法。国家发明专利. 专利授权号:ZL201310195353.7.
[44]用于生物过程诊断和物料特性分析的复合传感器及方法。国家发明专利. 专利授权号:ZL201310195391.2.
[45]一种研究微生物电化学的多电极微生物燃料电池系统。国家发明专利. 专利授权号:ZL201310195986.8.
[46]一种调节氢烷发酵产氢的方法. 国家发明专利. 专利授权号:ZL201310482059.4z
◆人才培养
 指导(合作)研究生27名(其中已毕业14名),指导研究生多次获得校长奖学金、国家奖学金、国际氢能经济和燃料电池伙伴计划(IPHE)优秀博士论文奖等奖励。主讲研究生课程《生物质工程学》、本科生核心课程《生物质能源工程》和专业选修课《环境微生物学》,负责农建专业《毕业实习》、《新能源工程课程设计》两门实践课。
    欢迎具有农工、化工、热能、环工、生化或机械等方面背景的学生报考研究生或开展博士后研究!
◆学术及教学荣誉
(1)2012年入选中国农业大学优秀人才(2015年期满考核为优秀)
(2)2012年获得2nd Environment-Enhancing Energy and Biochemicals 国际会议最佳论文奖
(3)2013年指导大学生获得全国大学生农建学科创新设计竞赛二等奖
(4)2013年获得中国农业大学第九届青年教师基本功比赛优秀奖
(5)2015年获得由中国工程院与中国石化联合设立的闵恩泽能源化工奖-青年进步奖
(6)2015年获得北京市优秀人才资助计划青年拔尖人才
(7)2015年获得大北农青年学者研究计划支持
(8)2015年指导博士生获得国际氢能经济和燃料电池伙伴计划(IPHE)优秀博士论文奖
(9)2015年指导大学生获得全国水利学科创新竞赛二等奖
(10)2015年指导研究生获得第九届全国研究生生物质能研讨会优秀论文一等奖
(11)2016年指导大学生获得全国大学生农建学科创新设计竞赛一等奖
(12)2016年指导研究生获得首届大学生厕所创意大赛三等奖
(13)2016年指导研究生获得第十届全国研究生生物质能研讨会优秀报告奖
(14)2016年中国农业大学教育成果二等奖(排名第9)
(15)2017年入选神农中华农业科技奖优秀创新团队(排名第12)
(16)2017年中国农业大学优秀共产党员
(17)2017年指导研究生获得第十一届全国研究生生物质能研讨会优秀口头报告三等奖
(18)2018年获得中国农业大学研究生教育成果一等奖(排名第1)
(19)2018年指导研究生获得第二届大学生厕所创意大赛三等奖

◆联系方式  
中国农业大学环境增值能源实验室
农业农村部设施农业工程重点实验室
地址:北京市海淀区清华东路17号
邮编:100083
电话:010-62737329    13810431521
Email:zdliu@cau.edu.cn 
◆备注 
  本材料统计日期为2019年4月