首页 >> 师资力量
徐旭

发布日期:2011-11-12访问次数:字号:[ ]

   姓名:徐旭;单位:水利工程系/中以中心;职称:副教授

   简介:徐旭,男,1983年10月生,四川成都人,博士生导师,获国家自然科学基金“优秀青年科学基金项目”资助。2006年7月毕业于中国农业大学农业水利工程专业,获工学学士学位;同年就读于该校农业水土工程系,2011年6月获工学博士学位,期间赴美国Texas A&M University进行博士生联合培养。2011年毕业后留校从事教学科研工作。

◆研究方向

(1) 农田生态系统过程与模拟

(2) 区域水循环及伴生过程模拟

(3) 农业水土资源高效利用与调控

◆科研项目

先后主持和参加国家自然科学基金项目、十三五国家重点研发计划、国家科技支撑计划课题、水利部公益性项目等。目前,主要项目有:

(1) 国家自然科学基金优秀青年基金项目,“农业水文及伴生过程”(52022108),2021-2023(主持)

(2) 国家自然科学基金面上项目“ 地下水浅埋干旱灌区农业节水的水文生态效应及优化调控研究”(51679235),2017-2020(主持)

(3) 国家自然科学基金重点基金“灌区节水的生态环境效应及高效用水调控”(51639009),2017-2021(主要参加)

(4) 十三五国家重点研发计划课题“河套平原盐碱地形成机理与盐碱障碍生态调控机制” (2016YFC0501301),2016-2020(主要参加)

(5) 十三五国家重点研发计划课题“节水灌溉效率与生境效应评价技术与方法”(2016YFC0400107),2016-2020(主要参加)

(6) 水利部公益性项目“节水灌溉的尺度效应及用水效率与效益评价”(201401007-2),2014-2016(主要参加)

◆论著及成果

在《Journal of Hydrology》、《Agricultural Water Management》、《Environmental Modelling and Software》、《Geoderma》、《Water Resources Management》、《水利学报》、《农业工程学报》等国内外期刊上发表学术论文50余篇,其中SCI收录40余篇。近年来主要论文:

[1]Xiong LY, Xu X*, Engel B, Xiong YW, Huang QZ, Huang GH (2021). Predicting agroecosystem responses to identify appropriate water-saving management in arid irrigated regions with shallow groundwater: Realization on a regional scale. Agricultural Water Management, 247: 106713 (corresponding author)

[2]Xiao X, Xu X*, Ren DY, Huang QZ, Huang GH (2021). Modeling the behavior of shallow groundwater system in sustaining arid agroecosystems with fragmented land use. Agricultural Water Management, 249: 106811 (corresponding author)

[3]Xu X, Li HW, Sun C, Ramos TB, Darouich H, Xiong YW, Qu ZY, Huang GH (2021). Pedotransfer functions for estimating soil water retention properties of northern China agricultural soils: Development and needs. Irrigation and Drainage, 1-16

[4]Liu MH, Xu X*, Jiang Y, Huang QZ, Huo ZL, Liu L, Huang GH* (2020). Responses of crop growth and water productivity to climate change and agricultural water-saving in arid region. Science of the Total Environment, 703: 134621 (corresponding author)

[5]Ren DY, Wei BY, Xu X*, Bernard Engel, Li GY, Huang QZ, Xiong YW, Huang GH (2019). Analyzing spatiotemporal characteristics of soil salinity in arid irrigated agro-ecosystems using integrated approaches, Geoderma, 356:113935 (corresponding author)

[6]Ren DY, Xu X*, Bernard Engel, Huang QZ, Xiong YW, Huo ZL, Huang GH (2019). Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method. Agricultural Water Management, 213, 868-881. (corresponding author)

[7]Xu X, Jiang Y, Liu MH, Huang QZ, Huang GH (2019). Modeling and assessing agro-hydrological processes and irrigation water saving in the middle Heihe River basin. Agricultural Water Management, 211, 152-164.

[8]Liu MH, Xu X*, Jiang Y, Huang QZ, Huo ZL, Huang GH (2018). An integrated hydrological model for the restoration of ecosystems in arid regions: Application in Zhangye basin of the middle Heihe River basin, northwest China. Journal of Geophysical Research: Atmospheres, 123, 12,564-12,582. https://doi.org/10.1029/2018JD028449. (corresponding author)

[9]Xu X, Sun C, Neng FT, Fu J, Huang GH (2018). AHC: An integrated numerical model for simulating agroecosystem processes-Model description and application. Ecological Modelling, 390, 23-39.

[10]Liu MH, Jiang Y, Xu X*, Huang QZ, Huo ZL, Huang GH (2018). Long-term groundwater dynamics affected by intense agricultural activities in oasis areas of arid inland river basins, Northwest China. Agricultural Water Management, 203, 37-52. (corresponding author)

[11]Ren DY, Xu X*, Bernard Engel, Huang GH (2018). Growth responses of crops and natural vegetation to irrigation and water table changes in an agro-ecosystem of Hetao, upper Yellow River basin: Scenario analysis on maize, sunflower, watermelon and tamarisk. Agricultural Water Management, 199: 93-104. (corresponding author)

[12]Ren DY, Xu X*, Huang QZ, Huo ZL, Xiong YW, Huang GH (2018). Analyzing the Role of shallow groundwater systems in the water use of different land-use types in arid irrigated regions. Water, 10(5), 634. (corresponding author)

[13]Ren DY, Xu X*, TB Ramos, Huang QZ, Huo ZL, Huang GH (2017). Modeling and assessing the function and sustainability of natural patches in salt-affected agro-ecosystems: Application to Tamarisk (Tamarix chinensis Lour.) in Hetao, upper Yellow River basin. Journal of Hydrology, 552: 490-504. (corresponding author)

[14]Jiang Y, Xu X*, Huang QZ, Huo ZL, Huang GH (2016). Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model. Agricultural Water Management, 178: 76-88. (corresponding author)

[15]Xu X, Sun C, Huang GH, BP Mohanty (2016). Global sensitivity analysis and calibration of parameters for a physically-based agro-hydrological model. Environmental Modelling and Software, 83: 88-102.

[16]Ren DY, Xu X*, Hao YY, Huang GH* (2016). Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon. Journal of Hydrology, 532: 122-139. (corresponding author)

[17]Xu X, Sun C, Qu ZY, Huang QZ, TB Ramos, Huang GH (2015). Groundwater recharge and capillary rise in irrigated areas of the upper Yellow River basin assessed by an agro-hydrological model. Irrigation and Drainage, 64(5): 587-599.

[18]Jiang Y, Xu X*, Huang QZ, Huo ZL, Huang GH (2015). Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model. Agricultural Water Management, 147: 67-81. (corresponding author)

[19]Xu X, Huang GH, Sun C, LS Pereira, TB Ramos, Huang QZ, Hao YY (2013). Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin. Agricultural Water Management, 125: 146-160.

[20]Xu X, Huang GH, Zhan HB, Qu ZY, Huang QZ (2012). Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas. Journal of Hydrology, 412-413: 170-181.

[21]Xu X, Huang GH, Qu ZY, LS Pereira (2011). Using MODFLOW and GIS to assess changes in groundwater dynamics in response to water saving measures in irrigation districts of the upper Yellow River basin. Water Resources Management, 25(8): 2035-2059.

[22]Xu X, Huang GH, Qu ZY, LS Pereira (2010). Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin. Agricultural Water Management, 98(2): 301-313.

[23]任东阳, 徐旭*, 黄冠华 (2019). 河套灌区典型灌排单元耗水机制.农业工程学报, 35(1):98-105. (通讯作者)

[24]郝远远, 徐旭, 任东阳, 黄权中, 黄冠华 (2015). 河套灌区土壤水盐和作物生长的HYDRUS-EPIC模型分布式模拟. 农业工程学报, 31(11): 110-116.

[25]徐旭, 黄冠华, 黄权中 (2013). 农田水盐运移与作物生长模型耦合及验证. 农业工程学报, 29(4): 110-117.

[26]徐旭, 屈忠义, 黄冠华 (2012). 基于遗传算法的田间尺度土壤水力参数与溶质运移参数优化. 水利学报, 43(7): 808-815.

[27]徐旭, 黄冠华, 屈忠义 (2011). 区域尺度农田水盐动态模拟模型—GSWAP. 农业工程学报, 27(7): 58-63.

◆联系方式

地址:北京市海淀区清华东路17号中以楼B303

邮编:100083

电话:010-62737144

E-mail: xushengwu@cau.edu.cn    xuxu23@qq.com

◆备注

本材料统计日期为2021年3月

 

 





打印本页 关闭窗口